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LE’lTER TO THE EDITOR 

Debye-Huckel theory on random fractals 

R Blender and W Dieterich 
Fakultat fur Physik, Universitat Konstanz, D-775 Konstanz, West Germany 

Received 5 June 1986 

Abstract. We investigate the screened Coulomb potential in a weakly coupled charged 
fluid bound to a random fractal geometry. An approximate solution of the corresponding 
Debye-Huckel equation suggests that the screened potential decays asymptotically accord- 
ing to an exponential of a fractional power of distance. This form is tested numerically 
for different types of percolation clusters with fractal dimensionalities d,  = 2.5 and d ,  = 2. 

Studies of fractal models for disordered systems (Bunde 1986) frequently face the 
problem of many-particle interactions present in real materials. To investigate many- 
particle effects in fractal geometries therefore seems to be an important theoretical 
task. Of particular interest is the role of Coulomb interactions among charged particles 
(Gefen and Halley 1984, Laibowitz and Gefen 1984). It is well known that the properties 
of charged fluids in Euclidean geometries strongly depend on the dimensionality d of 
the system. As a simple but important example we consider the screened Coulomb 
potential 4 ( r )  due to a point charge e in a weakly coupled classical one-component 
plasma. According to Debye-Huckel theory 

4 ( r )  = (ez/r)  exp(-KDr) ( 1 )  

for d = 3. Here K,,= (4.rme2/kgT)1’2 denotes the inverse Debye-Huckel screening 
length, which is determined by the average particle density n and the temperature T. 
On the other hand, if the fluid particles are bound to a two-dimensional plane, the 
screened potential inside the plane (obtained from the three-dimensional Poisson 
equation) decays algebraically as r-3, in contrast to the exponential decay in (1 )  for 
the case d = 3  (Baus and Hallsen 1980). This sensitivity to geometrical constraints 
suggests that screening will be modified in a characteristic way when the fluid particles 
are bound to fractal geometries. 

In order to investigate this we consider random fractals embedded in ordinary 
three-dimensional space. Their average structure is characterised by the mass correla- 
tion function (Mandelbrot 1983) 

( e ( r ) e ( o ) )  = ylrldf-3 (2) 

where e ( r )  is the characteristic function which is unity if the point r belongs to a 
particular realisation of the fractal and zero otherwise and df denotes the fractal 
dimensionality. In the presence of a fixed charge e at the origin r=O,  the potential 
r$ ( r )  satisfies the three-dimensional Poisson equation 

V’4(r) = -4 . r re2[8(r )+no8(r ) (g( r ) -  I ) ]  (3) 
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where no is the average density of fluid particles on the fractal and g(r) is their pair 
correlation function with respect to the origin. The last term in equation (3 )  ensures 
overall charge neutrality. By using the linearised Debye-Hiickel approximation, we 
write 

d r )  - 1 = -P+(r) (4) 

where p = ( k B T ) - l .  Our problem is now to solve (3) together with (4) for +(r) and 
then to average over configurations {e(r)} with e (0 )  = 1 .  

Before we present detailed numerical results, let us first discuss a simple mean-field- 
type approach, which is based on the assumption that the equilibrium charge distribu- 
tion is mainly determined by the average structure described by (2). Therefore, on 
averaging (3) ,  we substitute (4) and factorise ( e (  r )+(  r)) = ( e (  r))(+( r)). Since averages 
are taken under the condition e(0) = 1 ,  we can use (2) to obtain 

V2(+(r)) = -4re2a(r)+ ~ ~ r ‘ f - ~ ( e ( r ) )  (5 )  

where K ’ =  Y K ;  and ~ ; = 4 ~ e ’ n , P .  At this stage it is convenient to write ( + ( r ) ) =  
( e 2 /  r ) $ (  r )  with a screening function $( r )  which describes deviations from the bare 
Coulomb potential e2/r. From ( 5 )  we obtain 

+ ” ( r )  = ~ * r ~ r - ~ + ( r )  (6) 

x = Kr”’’ v = ( d , - l ) - ’  (7)  

for r f 0. Next we introduce the scaled variable 

and set $ = xu$ Then, by using (6), the function f satisfies the differential equation 
for modified Bessel functions I , ,  K ,  of order v (Abramowitz and Stegun 1970, Kamke 
1964). Employing boundary conditions +( r )  -+ 1 as r + 0 and $( r )  + 0 as r -+ CO we find 
the solution 

2v” 
U v )  $ ( r )  =- x ” K ” ( 2 v x ) .  

For df=  3 or v = 4, equation (8) reduces to $( r )  = e-Kr, which agrees with ( 1 )  after 
setting n = yn,. In the general case 1 < d,.S 3 we obtain the asymptotic behaviour 
(Abramowitz and Stegun 1970) 

$ ( r j  -constant x e-’vx X + W .  (9) 
According to this expression, the decay of the screened Coulomb interaction with 
distance r is governed by a fractional power ( df- 1)/2 < 1 in the exponential. Obviously, 
as d, is decreased, screening becomes less and less effective. For df = 2 we have verified 
numerically that (8) agrees with the spherical average of the screened potential in the 
Euclidean case d = 2 (Baus and Hansen 1980). 

To test the above results we have performed detailed numerical studies. As our 
fractal structures we have chosen percolation clusters on a three-dimensional simple 
cubic lattice of sites 1. Clusters are grown within a box of length 2L+ 1 = 93, starting 
at the centre 1 = 0 and following the procedure of Leath (1976). Two types of clusters 
are considered. One corresponds to the infinite cluster at the threshold concentration 
p c  = 0.31, characterised by a fractal dimension df 2 2.5. Second, we have chosen a 
concentration p = 0.25 generating objects with dF= 2.0, the so-called ‘lattice animals’. 
To obtain sufficiently large clusters we employed the enrichment method successfully 
used by Djordjevic et a1 (1984) in connection with percolation. 
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A particular cluster grown in this way is represented by the discrete characteristic 
function e,. The discrete analogue of the Poisson equation (3) in connection with (4) 
now takes the form ( e  = 1 )  

(41+6 - + l )  = -4fl&,o+ K i e I 4 1  (10) 
6 

where the summation is over nearest neighbours of site 1. This set of difference equations 
is solved by iteration (Ames 1977). Since our procedure is confined to a finite domain 
111 s L, we replace the condition of a vanishing potential at infinity by the boundary 
condition 4,= + for sites 1 in the shell LS111< L+1.  The constant + is taken to be 
the average potential at a distance Irl= L as obtained from the approximate expression 
(8). The iteration is started with a constant zero-order potential +io)= 4. To accelerate 
convergence we apply the method of successive over-relaxation, where 4;") is replaced 
by ( r  + 1)4J"' - r4jn-l) at each step n. During the iteration process the parameter r is 
controlled by the relative change ( + i n )  - c # ~ i " - ~ ) ) / + : " - ~ )  and increases from zero to, 
typically, 0.3. The iteration is stopped once the potential at sites along the cubic axes 
becomes stable to within lo-'. To achieve this we need about 200-500 steps. In the 
subsequent average over configurations {e,} we were limited to five clusters. For that 
purpose we selected clusters with small fluctuations in the mass correlation function. 

Results for the spherically averaged potential in the case of percolation clusters 
with df= 2.5 are presented in figure 1 for three different K ~ .  To compare the data with 
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Figure 1. Screening function +( r )  against r for percolation clusters with p ,  = 0.3 11  and 
d,  = 2.5. Data points are from numerical solutions of equation (10) for three values of 
K; ' :  +, 5; 0, 10; A; 15. The mean-field approximation, equation (S), is represented by 
the full curve. 
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Figure 2. Screening function $ ( r )  against the scaled variable Kr1 ’2” .  The numerical data 
are those of figure 1. The full curve follows equation (8) and the broken curve represents 
the asymptotic behaviour, equation (9). 
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Figure 3. Same as figure 1 for the lattice animals with p = 0.25 and dimension d,  = 2. 
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(8) we first determine the prefactor y ~ 0 . 3 3 4  (h0.005) in the mass correlation function 
(2) for our simulated clusters. Expression (8) with df = 2.5 and the screening parameter 
K = y ’ ’ * ~ ~  is shown by the full curves in figure 1. The agreement with the numerical 
data is excellent. Calculations for a smaller box with L=23 performed under the 
boundary condition as described above gave very similar results, the change being of 
the order of the difference between data points and the full curves (figure 1). 

As suggested by (8), data for different screening parameters should fall on a single 
curve when plotted against the scaled variable x, equation (7). This is confirmed in 
figure 2, which also shows the asymptotic expression (9). 

As a further test of (8) for more dilute fractal structures we repeat the above analysis 
using our ‘lattice animals’ with df = 2. A comparison with numerical data is shown in 
figure 3. The quality of the data collapse is similar to that of figure 2. 

We conclude that our findings support the analytic form (8) for the screening 
function ( I / ( r )  for random fractals. We also note that the good agreement between 
analytic and numerical results provides an a posteriori justification of the boundary 
condition which we have imposed on our solutions of (10). To illustrate the validity 
of our analytic approach under more general boundary conditions, we have artificially 
fixed the potential at the boundary such that $ ( L )  = 1. In that case (6) is solved by 

2u’ 
U )  

(I/( r ) = - x” ( K ,  (2 ux)  + a l ,  (2 u x ) )  

with a suitably chosen constant a. This expression, for dr= 2.5, is plotted in figure 4 
which shows the screening of the surface potential towards the interior of the box. 
Again, (1 1) agees well with the corresponding numerical solution, also shown in figure 
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Figure 4. Comparison between numerical and analytic screening function for a boundary 
value problem with + ( L )  = +(O) = 1. 
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We thank A Bunde and H Harder for interesting conversations. In particular we have 
benefited from discussions with S Havlin on the method of cluster growth. 
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